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Numerical studies of domains and bubbles of Langmuir monolayers
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A numerical algorithm based on the finite element method has been developed to accurately determine the
shape of the boundary of a domain containing “boojum” textures, which are order-parameter distributions that
resemble the structure of the orbital angular momentum in a supeffigdiroplefN.D. Mermin, inQuantum
Fluids and Solidsedited by S.B. Trickey, E. Adams, and J.Duffglenum, New York, 1994. Within the
context of the simple model we adopt, the effects of both bulk elastic anisotropy and line-tension anisotropy on
the domain boundary can be examined. It is found that line-tension anisotropy must be present in order to
account for domains with protruding features. Both elastic anisotropy and anisotropic line tension can result in
domains with indentations. The numerical algorithm has been extended to investigate the problem of a bubble
in an extended region ordered phase.

PACS numbegps): 68.55—-a, 68.18+p, 68.55.Ln, 68.60:p

[. INTRODUCTION manner. It was discovered that a noncircular boundary rep-
resents the equilibrium shape of a domain only when there is
A Langmuir monolayer is a single molecular layer of in- bulk or higher-order line-tension anisotrof®;10]. The equi-
soluble surfactant molecules spread on the air/water intedibrium domain boundary was derived as a function of line-
face. The surfactants are typically amphiphilic moleculestension anisotropy. Galatola and Fournigd] obtained nu-
with a hydrophilic headgroup and a hydrophobic tail. Eachmerically, in a fixed background texture, the equilibrium
of the individual molecules has internal degrees of freedomboundary when both elastic and line-tension anisotropies are
namely, the tilt and the tilt azimuth. Such a system exhibits gresent. Riviee and Meunief5] have attempted to explain
complex phase diagrafi]. The “tilted” phases have uni- the observed noncircular domains in terms of elastic anisot-
form tilt and possess mesoscopic ordering in the tilt azimuthropy. Evidence of bubbles with a noncircular boundary and
The structure of the tilt azimuth is typically observed as aan inverse boojum has been reported, and a qualitative the-
variation in the light intensity under a Brewster angle micro-oretical discussion of the equilibrium shape and texture as-
scope. The tilt azimuth organization is referred to as the texsociated with the bubbles can be found in Réfl. In the
ture. Various classes of the texture have been observed, suspirit of Ref.[10], the authors have analyzed in Rgf2] the
as stripes in the bull2], star configurationf3,4], and “boo-  equilibrium texture and boundary shape combinations pertur-
jums” [5] in the domains of the tilted phase, when it coexistsbatively to first order in both the bulk elastic and line-tension
with an isotropic phase. The term boojum refers to a class o&nisotropies. The approach describes the infinitesimal re-
textures that has a tilt azimuth distribution which resemblesponse of the texture and the boundary to anisotropic param-
the structure of the orbital angular momentum in a superfluiceters. However, when the correction is large enough to be
He droplet[6]. The boojum texture, in which the tilt azi- observed, the validity of first-order perturbative calculations
muth is distributed continuously without singularity, will be becomes questionable. The extension of the perturbative ap-
the subject of this report. Domains observed to contain groach to include higher-order corrections is algebraically
boojum texture are not circular in shaff®7]. In addition, formidable. If one is to go beyond first-order effects, the use
micrometer-sized bubbles, which are regions of isotropicmf numerical techniques in this problem is inevitable.
phase surrounded by a tilted phase, have been found to have The major challenges in this problem are, first, the evalu-
noncircular shapef7]. The local tilt azimuth in the tilted ation of a two-dimensiona{2D) texture with a boundary
phase around the bubble exhibits a nontrivial structurecondition on the boundary, which is itself variable. Secondly,
which has been termed an “inverse boojum.” The relation-not only must the texture be evaluated with high accuracy,
ship between experimentally observed textures and the urbut a precise determination of the derivatives of the texture
derlying structure of the ordered phase has attracted attentiamn the boundary is also crucial to the computation of the
in the literature recently. In particular, the boojum textureboundary shape. The authors have developed a numerical
was first discussed by Mermin in the context of orbital an-algorithm based on the finite element meth&EM) with
gular momentum distribution in a superfluitie droplef6]. adaptive mesh refinemeft3] for the evaluation of a 2D
Similar textures have been found and discussed in liquidexture and its derivatives. The boundary corrections can
crystal films[8,9]. An extensive discussion of the various then be computed using the Runge-Kutta methad].
classes of textures in the Langmuir monolayers can be fountinplementation of the numerical method reveals various
in Ref.[4]. classes of domain shapes ranging from those with indenta-
The problem of the equilibrium shape of, and the texturetions to those with protruding features and, additionally,
contained in, domains in a Langmuir monolayer has beermigar-shaped domains. The effects of bulk elastic anisotropy
investigated by Rudnick and Bruinsrit0], who varied both  have also been examined. These studies lead us to the con-
the texture and the boundary analytically in a perturbativeclusion that, at least for those domain shapes observed to
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date, it is more likely that the line-tension anisotropy is re-
sponsible for noncircular domains. A brief account of the
study described above has appeared in an earlier publication
[15]. The numerical results reported there and in this paper
confirm that the qualitative conclusions to be drawn from the
perturbative treatment are preserved up to large anisotropic
parameter.

In this paper, we describe in detail the implementation of
the numerical methods that led us to the results reported in
Ref.[15]. The extension of the algorithm to allow for com-
putation in the case of a bubble has also been examined. It is
verified numerically that bubbles acquire a nontrivial bound-
ary shape when only the first term in the Fourier expansion
of the line tension is present. This result contrasts with what
is known to be true in the case of the domain, which remains
circular in the presence of this low-order line-tension anisot-
ropy [10]. With the use of our numerical algorithm, we are
able to examine the effects of the bulk elastic anisotropy on
the shape of the bubble and on the texture that surrounds it.
We find that bulk elastic anisotropy significantly affects the

texture in the condensed phase around the bubble while Iea\éﬁbbles i plane-polar coordinates where the bountlsis/ param-
ing the boundary nearly unmodified. P P P

The organization of this paper is as follows. Section 11 €tzed byp(¢). The gray area is the bulk designated®y n and
contains the details of the computational scheme for thé are the outward normal and the tangent, respectiv@lys the
evaluation of the equilibrium textural and boundary configu-angle between the director and thex axis and# is the angle
ration for domains. The discussion covers the derivation opetween the outward normal of the boundary andxfaeis.
the simplest variational formulation of the finite element
method in our specific application, the Runge-Kutta method,
and the combined algorithm. In Sec. lIl, results for the do- a(¢)=0o+ 2, a,cosng, (2.3
main are examined. Section IV describes the extension of the nmt
numerical algorithm to the problem of bubbles. An examina- ) ) )
tion of the results of the perturbative treatment follows. Re-Ks andKp, are respectively the splay and bend elastic moduli,
sults on the effect of the bulk elastic anisotropy on the tex-and is the angle between the outward normabf I' and
tures around the bubbles are discussed. Finally, Sec. thex axis. The setup of the computations is shown in Fig. 1.
contains concluding remarks and discusses possible futule terms of the average Frank moduldsand the coefficient
extensions of the numerical methods discussed in this repordf elastic anisotropyb, where 2« =K,+Kg and 2<b=Kj

— Ky, the extrema of the elastic energy Ef.1) occur when
O(x,y) and the bounding curv&' satisfy their respective
Il. NUMERICAL ALGORITHM equilibrium conditions. The extremum equations €¢x,y)
aare

FIG. 1. The geometry of the calculations fay domains andb)

The model that we adopt for the Langmuir monolayer is
simple elastic model of an ordered medium associated with

XY-like order parameter—a two-dimensional unit vector — V20 +b[(0,,— 0,,)cos 0 +20,,sin 20
6(§,y), which can be parfilmetriAzed axcosO(x,y) +(—®f+®§)sin 20 +20,0, cos 0]=0
+ysin®(x,y) [12]. The quantitiex andy are unit vectors in

a Cartesian coordinate system, a@ddx,y) is the angle be- 2.4
tweenc and thex axis. The energy of the system contains

contributions from the boundaiy in addition to the bulky. N & and

The most general form of the elastic enefgy8] for such a
system with in-plane reflection symmefign achiral systeim «®,[1-bcos24-0)]+«bB,sin2(I—-0)—c'(I—0)
can be written as _o 2.5

H[®]:f HydA+ § o(9—0)ds, (2.))  alongl’, where®,=n-V®, ©,=t-VO, t being the tangen-
Q r tial vector. The extremum equation for the bounding curve
I', in terms of®,, 0,, anddd/ds, is

where
Hp— o' (0—0)0,—c"(I—-0)06,

Ks,o =, Ko - dd
My= |V 824+ 2|V X2, 22 +[o(9-0)+0"(8-0)] - +A=0, (2.6
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whereds is the length element df traversing in the positive angles, which can generally be trivially evaluated. We have
direction of ), andX\ is a Lagrange multiplier that enforces now projected our problem, originally on an infinite dimen-

the condition of constant enclosed area. sional space, onto aN dimensional space, wheié is the
The equations for bot andT" are complex and highly number of vertices in the triangulation 6f. We may write

nonlinear. Closed form analytic solution of the extremum®=(®;), i=1,... N and

equations appears impossible. Attempts have been made to N

solve the simultaneous equation perturbatively to first order _ o

in the elastic and line-tension anistropjé£]. When the cor- ®(X’y)‘i§1 Oigi(x.y), @7

rections to the boundaries are large enough to be observable,
it is not expected that the results will be accurate and highwhere ¢;(x,y) is a set of basis functions of the dimen-
order corrections have to be taken into account. Howeversional space. These;’s should not be confused with the
these perturbative calculations provide us with insight withpolar angle, which is denoted by the symhplwithout a
regard to the infinitesimal response of the boundary to theubscript. The discrete version of the elastic energy func-
anisotropies under investigation. In the work to be describedional Eq.(2.1) is a function ofN variables®; and it can be
below, we analyze the equations numerically in order to fur+ewritten in terms ofk andb as
ther explore the implications of the simple model E2.1)
for a larger range of the anisotropic parameters. We retain _K 2 @21 @2
coefficients up ta, in the expansion of the line tension in H(®)= 2fg){|v®| +b[(= 05+ 0))cos B
our analysis, i.e.,o(¢)=0y+a;(cos¢+ycos 2p), where
the quantityy=a,/a, is defined for convenience. We re- _ ; _
mark that the analysis will be based on the exact boojum 20,0y sin20]}dA+ ig(ﬁ ®)ds,
texture with circular domain whey=b=0. The boundary
will be computed in terms of the corrections to the circular (2.8
bou_ndary. The disc_ussions wi_II be res_tricted to those dOWhere®x:2i(Pix: 0,=30,¢), ex=0dp;/dx, and ¢;,
mains with boundarie$’ for Wh!Ch the qllstan(_:e from each =3¢, /dy. The equilibrium condition becomes
point on the curves to the origie"(¥) is a single-valued
function of the polar angle. IH(O)

The numerical algorithm consists of two parts: in the first 90, =0, i=1... N, 2.9
part, one evaluates the textufeusing an assumed boundary
I', and, in the second part, one compuiessing a fixed®.  which is a discretized version of Eq®.4) and(2.5). The set
Simultaneous equilibrium conditions fofF and ® are of equations above is not linear. However, if we write them
achieved when a set of predefined self-consistent criteria aiia the form of A(®)-®=b(0®), whereA(®) is anNXN
met. It is evident from the form of Eq2.6) that accurate matrix, andb(®) and® are X N column matrices as shown
determinations 0® and its derivatives are the key factors in below:
the solution of the problem. There are a number of numerical
techniques for solving the partial differential equation Eg. ) — _
(2.4), such as finite difference methods, spect(r]al methogs',a‘”()_Kfu[goix(p”(l bcos )+ eiye),(1+bcos2)
finite element methods, etc. Both finite difference methods
and spectral methods are convenient when applied to sys- +b(pixpjy+ @iyjx)sin 20 JdA, (210
tems with boundaries of regular geometries, such as circles
or straight lines, while the finite element methods are formu- _ 2. @2\
lated for problems with highly irregular geometries. For the bi(®)_KbJQ[(_®X+y)sm 20+20,0ycos D ]edA
case of our problem, the boundary condition E2.5 ap-
plies tol", which is an arbitrary curve. This militates in favor )
of the FEM. A key feature of the FEM is flexibility in the * fﬁ o' (9-0)eds, (217
choice of the set of points at which the functional values are
to be evaluated, including those on the boundary of the rewe are able to solve fo® iteratively using a standard nu-
gion of interest. This feature is exactly what is needed in oumerical algorithm for the solution of systems of linear equa-
problem, because of the nontrivial geometry of the boundarytions. We have adopted the method of LU decomposition
One of the simplest constructions of the FEM in two dimen-[14], a numerical algorithm for inverting a matrix, to solve
sions is described as follov}43]. We first approximaté' by  for @
a polygonal curve, then subdivide into a set of nonover- The mesh generation algorithm plays an important role in
lapping triangles. No vertex of one triangle lies on the edgeghe efficiency of the FEM. An adaptive mesh generation al-
of another in the set. The edges of the set of triangle form gorithm is used in our program to determi@e We start
mesh that cover§). The process of creating this set of tri- with a mesh that is nearly regular throughéutwith a pre-
angles is called mesh generation. The resulting set of tridefined grid size. After obtaining a first estimate @f a
angles is referred to as the triangulation(df Functions are refined mesh is generated. The refined mesh has variable grid
defined by their values on the vertices of the triangles in thesizes ovel) depending on the variation @. Figure 2 de-
triangulation. The value of a function within a triangle is picts the process of mesh generation with adaptive refine-
obtained by interpolation using the values on the verticesment. We are able to determine not or®;, but also the
Integration over() is the sum of integrations over the tri- derivatives®, and ®,,, which are necessary for evaluating




PRE 62 NUMERICAL STUDIES OF DOMAINS AND BUBBLES @ . .. 2419

(@) T T TN

RAAA

FIG. 2. The progressive steps toward mesh generation of the problem for the déanaiitial choice of grid points in a square lattice,
(b) deforming to grid points into the region of intere® and the bounding curv& while keeping the square lattice topology and
connectivity,(c) triangulation using the square lattice connectivity, &ddresulting mesh after adaptive mesh refinement.

the bounding curve, accurately and efficiently with the adapin turn used to evaluate a new accepted boundafy
tive mesh generation algorithm. =IO+ ®-1©)/,0 whereI'’™ is obtained using
The next part of the algorithm is the determination of thethe Runge-Kutta ordinary differential equation integrator on
bounding curvd’. We assume the order parameter filds  Eq. (2.6). The process is repeated until bat®=|@™
fixed in EQ.(2.6) so as to simplify the problem. We then pick —@("~ 1| and AT(™M=|T(M—-T{~Y)| gre |ess than a preset
an origin in Q) and parametrize the bounding curVeas tolerance of the orde®(10 ). The factorsy{™ and v’
k(@), wheree"(¥)=|r| is the distance between the origin and with initial magnitude on the order &d(10) are introduced
(x,y) onI', andg¢ is the polar angle. In this parametrization, to avoid numerical instability in these iterative processes.
Eqg. (2.6) is a second-order nonlinear differential equation inThese factors,vfr”) and ,,(Bﬂ), are adjusted depending on
k(). If we rewrite Eq.(2.6) as A®M andAT™, and at the final iterations take on values
, o, L, close to unity. Using this set of self-consistent criteria, the
K'+a(e kKK =r(ekk’) (212 results can be shown, by explicit calculations, to be sensitive
to change in the parameters, namelyandb, at least of the
orderO(10 ?) in the regions of the parameter space we will
be investigating.

wherek’=dk/d¢ and

o'0,—0"0y )
d(e;kK')=——————(1+Kk'"), (213
ota” Iil. DOMAINS
o' O+ 00 It is well established that the boundary is strictly circular
r(g;kk' )= ( 1— —¢> (1+k'?) for a domain with a boojum texture when elastic anisotropy
ota’ and line-tension anisotropy are not presentyerb=0 [10].
. This texture-boundary combination is indeed a local mini-
n e"Hp+A (1+k'2)32 (2.14 mum of Eq.(2.1) [16]. Thus, in order for there to be noncir-
ot+o" ' ' cular domains, it is necessary to retain terms in the expansion

Eqg. (2.3 up to at least terms varying a&. Using the nu-

Again, it is possible to integrate the equation kfkp) itera- ~ merical algorithm described above, we have performed sys-
tively using a standard method for the solution of ordinarytematic studies of the domain textures and shapes in terms of
differential equation. The Runge-Kutta methidd!] is cho-  the elastic anisotropy and the line-tension anisotropy as well
sen for our application. as the domain size. The quantibydefined earlier asKg

The problem of solving Eqs(2.4), (2.5), and (2.6) for ~ —Kp)/(Ks+Kp) parametrizes the elastic anisotropy. When
O(x,y) andT is reformulated in terms of the solution of b>0, bend textures are preferred; splay is preferred when
Egs. (2.9 and (2.12) iteratively for ® andT". We begin by b<0. The line-tension anisotropy is parametrized By
assuming an initial boundary(®) and texture®©, from  =a,/a;. The coefficient, will be positive for convenience
which the texture®'(") can be computed using the FEM. [12]. Then, the inequalityy>0 corresponds to the case in
Then the iterated textur®V= @+ (@' -0)/,{9 is  which thec directors on the boundary prefer to lie tangent to
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FIG. 4. The textures and shapes of domains WRi+5, o
=4, a;=1.6, anda,=0. Their stiffness coefficients arf@ B=
-0.8,(b) B=0.8.

resultant textures very much resemble a boojum as seen in
the BAM image shown in Fig. 4. This means that it is diffi-
cult to identify elastic anisotropy based on observation of the
textures in the domains. The response of the boundary to
elastic anisotropy that we obtain contrasts with that reported
—4, a,=16, a,=0, k=1, andb=0. Also shown in the back- in Ref. [11]. The domain acquires an indentation when
ground is the simulated image that would be obtained by Brewster- - T_he !ndentat'on remains observable f,or a large range of
angle microscopy. domain sizes. The boundary protrudes slightly lior 0, as
depicted in Fig. 4. The protrusion whédr= +0.8 is subtle

. . . A . and does not resemble the sharp feature observed experimen-
it while y<0 applies when the dlreActors prefer to point tally. Thus, elastic anisotropy alone is not capable of ac-
along the normal to the boundary,n. The variations of counting for the shapes of the domains observed experimen-

these anisotropic parameters are associated with the micrgg|ly. Figure 5 shows domains of various sizes wiianb
scopic details of the Langmuir monolayers, such as the chaia- —0.8 and(b) b= +0.8.

length of the surfactant molecules and the interactions be- \we now proceed to discuss the role of the line-tension
tween them. However, the correspondence between the agnisotropy, parametrized by, in the textures and boundaries
isotropic parameters and the microscopic details has not ygff the domains. Elastic anisotropy will be eliminated (
been fully established. Before we describe our observation. 0) for simplicity. We first investigate situations whégp|

we note that, whery=b=0, the exact result is given by a <1 For very small domains wheR,a, /x<1, the texture
circular boundary of radiuR, together with a boojum tex- is almost constant and the dominant contribution to the
ture with a +2 defect located a distanc®=Ro(1  poundary deformation is the, contribution. The domain is
+V1+pg)/po from the center of the domain, wher®  elongated at both ends along the axis connecting its center
=Roa,/k is the normalized domain radiy40]. An exact and the virtual defect whey>0, and is flattened at both
equilibrium texture-boundary combination is shown in Fig. ends along the same axis whest 0. Domain shapes exhibit

3. The simulated image obtained using Brewster angle mia twofold symmetry. WheRya,/«x=1, the texture closely
croscopy(BAM) is also displayed in the background. The resembles the boojum texture and contributes significantly to
signature of a boojum in a BAM image is a set of straightthe boundary distortion through the influenceyofn the line
constant-intensity lines emerging from a virtual defecttension. The domain no longer displays twofold symmetry
slightly outside the domain. The light intensity in a BAM and acquires a protrusion whet»0, or an indentation when
image depends on the exact experimental setup and the prop=<0. Figure 6 shows domains with ranging from—0.5 to
erties of the monolayef17]. In the case of all simulated (.5 The numerical algorithm also allows us to examine do-
BAM images presented in Fig. 3 and elsewhere in this remain shape and texture whep=0 anda,=1. In this case,
port, the Brewster angle is taken to be that of watef  the domain acquires a “cigar shape” and the texture is as-
=53.12°, the angle of the analyzeris equal to 90°, the sociated with two virtuak1 defects[10,12. The progres-

thickness of the monolayer is assumed tadbe0.3 nm, the  sjve changes of the texture and the shape from a system with
tilt is 30°, the dielectric constants of the monolayer are

=2.31, ¢=2.43, and it is assumed that the wavelength of
the Iight)|l=514 nm. (a) (b)
We first concentrate on the effects lofand keepy=0.

When b<<0, the texture is altered in such a way that the

virtual defect appears to move closer to the boundary. This is

observed as accelerated convergence of the constant-

intensity lines to a point on the boundary. On the other hand,

when b>0, the texture relaxes as if the virtual defect has

moved away from the boundary. The deviation of the texture

FIG. 3. Circular domain with a boojum textur®,=5, oy

from the boojum texture is as large as 20% wihlp=0.8. FIG. 5. The domain shapes computed égr=4, a,=1.6, and
The textural response is qualitatively in accord with that re-a,=0, andR,=0.5,1,2,4,8. Their stifiness coefficients d& S
ported in Ref.[11]. Although there are significant textural =-0.8, (b) =0.8. For ease of observation, domains are not

corrections due to the presence of bulk elastic anisotropy, theéhown to scale.
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FIG. 8. (a) The definition of the excluded ang,. (b) Experi-
mental measurements of the domain-sRg dependence ofl
observed in the domains of the, phase(one of the tilted phasgs
surrounded by the; phasg(one of the isotropic phasetgken from
Ref. [7].

Ref.[7], in which the domains investigated possess protrud-
ing features sharp enough that “excluded angldsy char-
acterizing the boundaries can be identified. The definition of

FIG. 6. The textures and shapes of domains computed forll,O and the e)_(perimental da_ta are depicted in Fig. 8. The key
—0.5<8,<0.5, Ry=5, 0o=4, a,—1. (@) a,=—0.5, (b) a,= features of th|s_ set of experl.me.ntal data_are thatw, goes
0.3, (0) ay= 0.1, (d) a,=0.1, (6) a,= 0.3, and(f) a,=0.5. throug_h a maximum aRO_varles,(Z) there_: is an abrupt onset

of W, in the smallR, region; and3) the intercept at th&,

a;=1 anda,=0 to one for whicha;=0 anda,=1 are axis when the curve is extrapolated impliespliomoc Vy#0.
shown in Fig. 7. When botta; and a, are nonzero, the Before we make comparisons between theoretical results
texture can be thought of as a superposition of myrend  and the experimental data, we comment on the extraction of
purea, textures. Typically, aRya,/x~1, the effect of the ¥, from computed domain boundaries. It has been shown
set of two +1 defects becomes observable whes 1/4. that, within the parameter regime of our discussions, the do-
Domains with indentation and protrusions and the cigarmain boundaries are smooth and continuous. There is no
shaped domains, have all been observed experimentadlly — cusplike singularity on the boundary. This can be seen in the

We have already briefly discussed the issue of size depelomains of various sizes shown in Fig. 9. Nevertheldss,
dence in the previous paragraph. To look into this matter ircan be unambiguously measured for some of these domains.
detail, we will examine the particular set of data reported inThe values of the parameters utilized here arel, &
=0.4, andy=0.5. To determinel for these domains, we
adopt a systematic schertdevised in Ref[12]) that utilizes
the function I=1,exd—(d>/dy?)?] to capture the most
likely ¥, for a given domain bounding curve, whexéy)
parametrized” in a Cartesian coordinates system. Density
plots of | as a function of=—2 tan *dx/dy and R, for
numerical and the perturbative results are shown, respec-
tively, in Figs. 1Qa) and 1Qc), the darker regions represent-
ing largerl, and highlighting the more likely values &f .
With the use of this method for the determinatioriog, we
have obtained reasonable agreement between the perturba-

(a) (b)

FIG. 9. The shapes of domains of various sizes computed for
09=4, a;=1.6, anda,=0.8. (a) Smaller domains wittiRy=0.2,

FIG. 7. The textures and shapes of domains withl anda, 0.25, 0.33, 0.5, and 1, which exhibit two-fold symmeily). Larger
=4. Their coefficients of the anisotropy line tension d&a a,; domains withRy=2, 2.5, 3.3, 5, and 10, which have a protrusion on
=1, a,=0, (b) a;=0.8, a,=0.2, (c) a;=0.6, a,=0.4, (d) a; one end of the boundary. Each of the sets of domains is plotted to
=0.4,a,=0.6,(e) a;,=0.2,a,=0.8 and(f) a;,=0, a,=1. scale.
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(a) (b) R, (Lm) tween the perturbative results and the experimental[d&fa
4 1.3 1 0.8 Except for examining the results of more reliable computa-
tions, there is no attempt to fit the experimental data in this
report for reasons to be discussed below. We first adopt the
ﬁ?ﬁ same set of parameters with which the perturbative analysis
i3 ﬁg fits the data in the largB;, regime, for the comparison. It is
obvious from Fig. 1(b) that even aty=0.5, the theoretical
prediction for the maximum o, is much smaller than that
40 - i observed experimentally. This superficial comparison be-
20 tween the maxima o¥ o implies thaty is very much larger
z in the system investigated. Detailed comparisons do show
0-0250:251 9-9010-75 200 14230 (0925 0450 0475:1400 1425 excellent agreement for domains larger than 4. Experi-
1/Ro (1/um) mentally observed domains with maximui, and small
(c) (d) R, (Lm) circular domains are not reproduced numerically. Attempts
40 1.3 8

have been made to investigate the combined effect of the
elastic anisotropy and y. However, fory of such a magni-
tude, contributions fronb do not affect the qualitative be-
120 ﬁ% haviors discussed in this context. It is thus concluded that,
&%3 although the simple elastic model is not capable of fully
1 addressing the issue of the domain size dependence of the

& ( shapes, it has successfully produced the qualitative features
‘0 3 in the ¥ versusR, plot and many nontrivial domain shapes
20 . observed in various experimerjtss].
In the largeR, regime Ry>1), the boundary corrections
0.0250.25 0.50 0.75 1.00 1.25 0.25 0.50 0.75 1.00 1.25 are confined in a small portion of the boundary and the do-
1/Ro (1/um) mains become nearly circular. Because of the rapid texture
variations in the immediate vicinity of the boundary, associ-
FIG. 10. (a) Density plot ofl as a function of¥" andR, of the  ated with the approach to the boundary of the virtual defect,
numerical results for the domain@) Plot of | ., and the regionin e are unable to perform dependable numerical investiga-
which1>1r,,/2 as a function o andR, of the numerical results  tions of extremely large domains. This leaves open the ques-
fqr the domains. Superimposed are the experimental data shown §yn of the asymptotic behavior oF , in the Ry— limit.
Fig. 8(b) with parameters</a; =4 um, 6=0.4, andy=0.5. (c) With the numerical scheme for evaluati@yandI” simul-
and (d) are corresponding plots for the perturbative results. taneously, we are able to explore the simple model(Ed)
in a much wider range of the parameter space with confi-
tive analysis and the numerical computations in the l&ge- dence. Not only does the model account for domains with
regime. We note here that the value at whicks set, 0.5, is  various features observed in experiments, it also yields an
too large for perturbative results to be dependable. Howeveappropriate domain size dependence of the boundary shapes.
the perturbative results resemble those obtained numericalljowever, we are unable to perform reliable numerical inves-
in the sense tha¥, increases aR, decreases frorm. The tigations on extremely large domains. Despite the fact that
abrupt onset ofV, indicated in Figs. 1@) and 1@d) is not  there is an upper bound to the domain size that we are able to
present in Figs. 1@ and 1@b). It is, however, evident in compute, we believe, on the basis of measurements of the
Figs. 9 that¥; can be unambiguously identified for domains defect positiong5], that the largest domains we are able to
with Ry=1. WhenR,< 1, the domains become elliptical and compute are not smaller than those that have been observed
\110:0_ Hence, there is an apparent jump\[fb near RO experimentally. The numerical algorithm appears to be ca-
=1, beyond which¥, becomes nonzero. The jump i, pable of evaluating domain shapes for arbitrary anisotropic
predicted in the perturbative analydi$2] is indeed con- line tension, with one caveat. A closer look at E(&.13
firmed by the more reliable numerical computations reported@nd (2.14 immediately indicates that this approach is not
here. For very small domain®Rf<1), the shapes are pre- appropriate for situations in which+ ¢”=0 at some points
dicted to be elliptical by our numerical analysis, in contraston the boundary. An approach that is appropriate to this situ-
to the prediction of nearly circular domains that results fromation is the Wulff constructiof10].
the perturbative analysis. The magnitudeyothat results in
breakdown of the first-order perturbative analysis is the key V. BUBBLES
origin of the mismatch. In Figs. 16) and 1@d), the maxi- '
mum | ., Of | is shown as the dark line segments and the We now turn to the investigation of bubbles. The first task
gray bands mark the regions in whitk-1,,,,/2. They de- is to numerically evaluate the texture in a reglorthat does
pict, respectively, numerical and perturbative results. Supemot have an external boundary. It is possible to implement a
imposed are the experimental data, which provide a referstraightforward extension of the problem of the domain by
ence for the comparisons described above. introducing an artificial external boundary far away from the
To compare the theoretical results to the experimentainner bounding curvd’. One must introduce a boundary
data, a length scale is required. The length scale is set by thmndition on this added external boundary by hand. Figure
assignmenk/a;=4 um when the comparison is made be- 11 displays the triangulations associated with such an imple-

4 2 1.3 1 0. 4 2 1 0.
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FIG. 11. Mesh with additional external boundary used in the
direct extension of the FEM algorithm for bubbles.

mentation of the approach to the calculation of the property
of a bubble. The method, though inefficient, produces results
that are consistent with those obtained perturbatiy&B}. )

The problem that involves aifinite Q with internal FIG. 13. Boundaries and textures around the bubblesRfpr
boundanf is referred to as the exterior problem. If one does™> 21=1, k=1, andb=0.

not introduce an artificial external boundary, it is necessary, .. . .
to have at hand a complete set of exterior solutions to cog(-NIth the problem transformed, the meshing algorithm used

" . for the domain can be applied immediately. We are then able
struct the boundary condition &t. For our particular case, . : S .
this is possible wheb =0, in which case the bulk extremum to proceed with the investigation of the bubbles with the

equation reduces to Laplace’s equation. The examination ofame efficiency and accuracy as in the studies of the do-

. ; . S - mains.
ghaeti g;ogﬁdmvz\gtg rgogg?:\)/vlastr: Q;?Jhoé g)?izlt ;I :glzf'gvnezg pro- In the numerical studies that we have performed with the

priate set of external solutions in this case. Noting that theuse of the transformation above, the results for the bubbles

order parameter tends to a fixed valu®@ =0 for our case feported in the perturbative analy$ik2,7], that the bound-

herg asr—oo, it is possible to approach the problem of the aries_ are not_circular even whér-0 anda,=0, have been
bubble usind a different set of polar coordinates, i.e confirmed. Figure 13 shows the texture and the boundary of

(r'.@)=(1/ .¢), that transform the bubble into a domain of 'a typical bubble. In the background simulated BAM image,

, . , A . one notes the circular constant-intensity lines that identify
?:;S%C 22gr83},’ndmg curvé”’, shown in Fig. 12, with the the “inverse boojum.” The numerical algorithm further en-

ables us to obtained equilibrium bubble boundaries and tex-

K tures around them when elastic anisotropies are present. As
H= §J ,{®>2<+ O;+B[(-0;+07)cos A0 —2¢) can be seen in Fig. 14, the elastic anisotropy leaves the
@ boundaries substantially unaffected while significantly
o(9—0) changing the appearance of the textures around the bubbles.
+20,0,sin2(0—-2¢)]}dA+ i,TdS. The BAM images are also shown in the same figures. In

contrast to the case in which=0, the constant-intensity
lines become elongated perpendicular to the axis connecting
(a) the center of the bubble and the position of the virtual defect
whenb<0. These lines are elongated in the direction of the
axis whenb>0, as shown. This allows for the determination
of the sign ofb in the Langmuir monolayer by examining the
BAM images of the bubbles.

In Figs. 15, we display the size dependence of the bubble

(b) boundaries. Bubbles appear to be circular when they are
small (Ry<<1). For large enough bubbleR{=1), an “ex-
cluded angle™V defined in Fig. &) can be identified. An
approach similar to the analysis of the size dependence of the

(b)

(a)
©)

FIG. 12. Solving the problem of the bubble by transforming it
into an inverse domain problerta) shows the regioif) of ordered
phase and the boundakyfor the bubble(b) shows the transformed FIG. 14. Boundaries and textures around the bubblesRfpr
region)’ and boundanf™’. (c) shows the mesh that covefks'. =5,a;=1, k=1, (&) with b=—0.8 and(b) with b=0.8.
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(a) (b) sonably well. The by-eye fit was obtained in Rgf] and no
further adjustment of the parameters is made in this investi-
gation.

We have thus devised a numerical method to approach the
problem of the bubble that can be implemented with the
same efficiency as in the problem of the domain. There is
good agreement between perturbative and numerical results.
We are able to investigate the effect of the elastic anisotropy,
and our results point to a possible means for the determina-

FIG. 15. Boundaries of bubbles computed fo=0.16, o tion of the relative strength df andK,,
s .

=1, a;=0.16 and(a) R,=1,2,3,4,5,6, andb) R,=8,20,40.

boundary in the case of domains can be applied. Figures V. CONCLUSIONS
16(a) and 16¢c) compare the density plots dfas a function
of W versusR, for the numerical and the perturbative re-
sults. The two plots are in excellent agreement. When
=0, the texture does not differ significantly from that of the
inverse boojum even though the bubble is not exactly circu
lar. This contrasts with what is seen in domains wheh0,

We have discussed in this report the implementation of a
numerical method that leads us to the solution of simulta-
neous equilibrium conditions for the textures and the bound-
ing curve of the domains. Using this numerical algorithm, we
have investigated the influences on the textures and domain
shapes of the line-tension and elastic anisotropies. Our analy-
&is of this simple model reveals that elastic anisotropy does,
indeed, result in interesting domain boundaries with protru-
Sions and indentations. The domains with indentations re-

boojum texture. Th&k, dependence o¥ has features that
are qualitatively similar to those seen in the case of domain

observed experimentally7]. Experimental data are shown
together with the numerical and perturbative results in Figs
16(b) and 1&d), respectively, and all the results match rea-

mains that we generate with protrusions are very different
from those in observed in BAM imagé¢48]. Hence, elastic
anisotropy cannot qualitatively account for all experimental
observations. Furthermore, our numerical results are in con-
(@) (b) Ry (Lm) trast to the claims in Refl11]. Dents in boundaries are due
6 1.6 08 05 04 03 1.6 0.8 05 04 0.3 to a bend modulus that exceeds the splay modulus,h.e.,
=(Ks—Kp)/(Kst+Kp)<0, while protrusions are present
whenb>0. On the other hand, the second harmonic contri-
bution to the line tension, parametrized pya, /a4, is ca-
pable of producing nontrivial domain shapes that resemble
the shapes observed experimentally. For the influence of
on the boundary, our results are in qualitative agreement
with those presented in RgfL1]. Comparison has also been
made between perturbative resylt®], the numerical com-
- * putations described here, and the experimental [dtal he

0-063 0.63 1.25 1.8% 2.50 33 0.63 1.25 488 290 313 magnitude ofy used in the perturbative analysis is the prime

1R (1/pm) factor causing the mismatch between the perturbative and
() (d Ry (Lm) numerical results. Whery is large (=0.5 for our casg the
16 1.6 0.8 05 0.4 03 1.6 0.8 05 04 0.3 first-order perturbative approach is not expected to be accu-
rate.

While the results of the perturbative analysis and the nu-
e merical study are different quantitatively, they possess simi-
B 100 lar qualitative features, namely, the onset of the excluded
5 80 angleWV as the domain siz& increases, followed b
60 reaching a maximum and then decreasingrggontinues to
40 increase. These match the qualitative features that are present
20 ' in the experimental daf{&] shown in Fig. ). Experimental
& results are not reproduced in the numerical calculations when

0-063 0.63 1.25 1.88 2.50 3.3 0.63 1.25 188 2.50 3.23 R is small. The discrepancies between the experimental data
/R (1/um) and the numerical result imply that other interactions, ne-

FIG. 16. (a) Plot of | as a function of andR,, of the numerical glected in the model, may be S|gn|f|can_t. )
results for the bubblegb) Plot of I ,,,, and the region in which We have also extengied the numerical algorithm Fo the
>1 may/2 as a function of andR, of the numerical results for the Problem of bubbles. It is found that the transformation
bubbles. Superimposed are the experimental observations of gas*!' =1/ results in a new domain problem which allows us

eous bubbles in the, phase. The experimental data have appeared0 solve the equilibrium conditions for the bubbles at the
in Ref. [7]. The parameters for the by-eye fit akéa,;=0.4 um  Same level of efficiency and accuracy as those for the do-

and 5=0.16.(c) and(d) are the corresponding plots for the pertur- mains. Not only have we obtained results that are consistent
bative results. with those in the perturbative analydig,12], we have also
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analyzed the effect of elastic anisotropy on the textures andthere we pu®=(0,,0,, ...,0,)", and®==¢;0,. We
the boundary of the bubbles, a task that is algebraically fordifferentiate Eq(A1) with respect to®; yielding
midable in a perturbative analysis. The influence of elastic

anisotropy on the boundary is small while it significantly JH(O)

modifies the textures. This provides a means for the qualita- 00, Kfﬂ[‘PiX‘ij(l_ bcos29)
tive determination of the elastic anisotropy by observing the

texture around the bubbles. The agreement between the per- + ¢iyejy(1+bcos 20)

turbative results and the numerical computation is excellent.

This is not surprising as, is not involved. TheR, depen- +b(@ixpiy+ @iy @ix)Sin 20 JdAG,

dence ofV, is similar to that in the case of the domain,

except that the maximum oF is much smaller. The per- —ij [(—02+ ®§)sin 20
turbative result agrees reasonably well with the experimental @

Svaetl? as reported in Reff7]. The numerical results match as +20,0, cos 0]¢,dA

In conclusion, we have successfully implemented a nu-
merical algorithm that enables us to analyze unambiguously
a simple model, Eq(2.1), of tilted ordered media in a non-
trivial geometry imposed by experimental observations. UsThe equilibrium condition gives®=b with A andb pro-
ing this numerical algorithm and its extensions, we are ablgided in Eqs.(2.10 and(2.11).
to address the long-standing debate with regard to the origin
of the cusplike features observed in domains of LangmUifAPPENDIX B: INTEGRATION OVER A TRIANGULATION
monolayers using an elastic model. Within the context of this '
simple model, which addresses only the competition between The integrals in Eqg2.10 and(2.11) over{) are broken
the bulk elastic energy and the boundary energy, many qualap into sums of integration over the triangles in the triangu-
tative features of the experimental observations have beedation of (). Integration over the interior individual triangles
captured. Discrepancies cannot be avoided, as the real sysan usually be carried out analytically, depending on the spe-
tem is much more complex. The model we adopted has necific forms of the basis functiong;(x,y) and the matrix
glected other effects and interactions that are present in trgememsAij andb;. We have chosem;(x,y) to be a con-
real system, such as dipolar interactions and adjustments tihuous, piecewise linear function ix andy within a tri-
the tilt degree of freedom. A combination of these effectsangle. The line integra-ds in b; must be evaluated nu-
may account for the discrepancies between the experimentgierically, because the integrand depends on the polar angle
data and the theoretical results. The apparently general ny;, which is not linear inx or y. This does not degrade the
merical algorithm is, however, not capable of handling situ-efficiency of the computation because, first of all, only tri-
ations in whicho +¢” =0 at some points on the boundary. A angles whose perimeters coincide withcontribute to the
different approach, such as the Wulff construct{d®], is  line integral, and secondly it is a line integral over a short
required. Nevertheless, our numerical algorithm is versatilgjistance.
and can be extended to systems containing topological de- |n Eq. (2.7), we express the functiofi(x,y) for (x,y)
fects, or with the ordered phase filled in a non-simply- < () in terms of its values at the nodes of the triangulation
connected space. and the corresponding basis functiopgx,y). Within an

individual triangleK, we can write

- §F0r(0—®)(pid5. (A2)
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APPENDIX A: VARIATIONAL FORMULATION qof{f)(x,y) is the restriction ofpy (x,y) in K. The actual in-

OF THE FEM dex of theith vertex isK; . It is, however, awkward to carry

the K in the symbolK; throughout the discussion. We will
usei to identity the vertex for simplicity from now on, i.e.,
fKi is simplified asf;. We introduce a set of natural coordi-

natesu andv such that

In finite element analysis, we approxim#x,y) by Eq.
(2.7). The energy functionaH[®] given in Eq.(2.1) now
becomes

H(®)=%fQ{IV®|2+b[(—§+®§)cos f(u,v)="f1+(f— fu+(f3—f1)o, (B2)

whereue[0,1], v €[0,1], andu+v <1. Transformation be-
—20,0,sin20]}dA+ % a(9—-0)ds, tween variable sets—y andu—uv can be obtained from Eq.
' (B2) by substitutingf with x andy. We then have the follow-

(A1) ing relations:
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1
u= 1 [(ya=y)x=(Xs=Xp)y+xsy1=X1ys], (B3)

1
v= (1= ya)X= (Xa =Xy +X1yo=Xoy1],  (B4)

whereA is the Jacobian determinant given by

——[?(X’y)—x — Y1Xo+ XY 53— X3Y2+ XzY1— X
) 1Y2 7 Y1Xo T X2Y3— X3Y2 T X3Y1— X1Y3.

(B5)

Identifying Egs. (B1) and (B2), we find ¢1(u,v)=1-u
—v, @o(Uu,v)=u and g3(u,v)=v. In terms ofx—y, we
have

1
e1(X,y)= K[(yz_ Y3)X— (Xa—X3)y +XoY3—X3Y2],
(B6)

1
ea(X,y)= K[(YB_ Y1)X— (X3—X1)Y+X3y1—X1Ys],
(B7)

1
e3(X,y)= K[(yl_h)x— (X1=X2)Y +X1Y2—XoY1].
(B8)

Evaluation of the matrix elemewry;; involves the follow-

ing area integrals, which can be computed analytically. The

trivial one is the area oK, which is [xdA=|A|/2, and

fcosZ@ dA=H cos 2,
K 4 1(0:;-0,)(0,-053)
N cos 0,
(02,-03)(03-0,)
N CoS 0, 89)
(03-0,)(0,-0,))’
fsinZG) dA=H( Sin26,
K 4 1(0:-0,)(0,-03)
N sin 20,
(0,-03)(03-0,)
Sin 205
(B10)

T 05-0,)(0,-0,))’

as ¢ix and ¢;, are constants. Evaluation bf involves

f @1 C0S 20 dA=
K

f ¢, C0S 20 dA=
K

J’ @30S 20 dA=
K

f @1 Sin20 dA=
K

f ¢, SiN 20 dA=
K

|A] cos 20,

4 1(0;-01)(0,-0,)

N Sin20,;—sin 205
2(0,-05)%(0;-0,)

sin20,—sin 20,
2(0,-0,)%(03-0,))

|A| cos 20,

4 1(0,-0,)(0,-053)

. Sin20,—sin 204
2(0,-03)%(0;-0,)

sin20,—sin 204
2(0,-0,)(03-0,))

|A| cos 0,
4 1(0,-03)(03-0,)
Sin203;—sin 20,

+
2(0,-03)%(0,-0)

Sin203;—sin 20,
2(0;-05)%(03-0y) ]’

[A] sin20,
4 1(053-0,)(0,-0,)

COS29,—Ccos 4
2(0,-03)%(0;-0,)

N cos29,—cos 9,
2(0,-0)%(03-0,))

|A|< sin 20,
(

4| (0,-0,)(0,—0y)

COS 29,—CoS 4
2(0,~03)%(0;-0,)

N Cos29,—Ccos 29,
2(0;-0,)%(05-0y) ]’
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(B11)

(B12)

(B13)

(B14)

(B15)
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f 26 dA |A] sin20 4 f 196 dA |A| cos V¢ sin 20 ¢
sin =— sin =—| -
s 41(0,-03)(0;-0)) « Ve 4\ Oe—05 (0.-0,)2
C0s20;—Cc0s 20, COS —cos Vg
- 5 + T | (B21)
2(0,-03)%(0,-0,) 2(0e—0p)
COS 23— CoS 20,
+ . . (B16)
2(0,-03)9(03-0,) . :
_ Al [ sin20g+sin 204
The above formulas will work only i), #©,#© 5. Let us fKQ"O Sin20 dA=—=| — (©.—0,)2
consider cases where the value®iof O ¢ at two vertices of E 7O
trlang[e K and ®_=o at t_he other vertex. We obtain the cos 20— cos M,
following for the integrals inA;; : - 3 (B22)
(Ge—00)
|A] [ cosg—cos 2, 2sin20¢
fcosdA=T > + 0.
K (Oe—00) E OBl for the integrals required to evaluate. Finally, when®;
(B17)  _@ for all i's, one will needf«eg dA=|A|/6.
_ |A][sin20g—sin20, 2 cos B¢
f sin20 dA= — - .
K 4 (®E_®O)2 G)E_@O
(B19) APPENDIX C: DERIVATIVES ON THE BOUNDARY

We denote ag the restrictions of the basis functions at the
nodes that hav® =0, and aseg the restriction of the
basis function at the node that h@s=0,. We arrive at

One of the biggest benefits of the FEM is that it enables
straightforward determination of the derivatives@fon the
boundary. The tangential derivative at nads

|A|< sin 20 ¢ cos V¢

cos 0 dA=—
fK¢E 4 ®E_®O (®E_®O)2

(9@‘ . 1 (®i+1_®i+®i_®il (Cl)
sin20:—sin 20, ©19 at | 2e1+kZ\ eiri—ei  @ei—¢i-1)
2(0e—00)° |

IA| oS ¢ +cos M The normal derivative o is given by Eq.(2.5), which
fgoocos dA=—| — reads
K 4 (Oe—00)?

, Sin20¢—sin i(%) 820 1 _ o' (9-0)+kbOSN2AO-D)

(0—00) an k[1—bcos20—9)]
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