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Numerical studies of domains and bubbles of Langmuir monolayers

Kok-Kiong Loh and Joseph Rudnick
Department of Physics, UCLA, Los Angeles, California 90095-1547

~Received 9 February 2000!

A numerical algorithm based on the finite element method has been developed to accurately determine the
shape of the boundary of a domain containing ‘‘boojum’’ textures, which are order-parameter distributions that
resemble the structure of the orbital angular momentum in a superfluid3He droplet@N.D. Mermin, inQuantum
Fluids and Solids, edited by S.B. Trickey, E. Adams, and J.Duffy~Plenum, New York, 1997!#. Within the
context of the simple model we adopt, the effects of both bulk elastic anisotropy and line-tension anisotropy on
the domain boundary can be examined. It is found that line-tension anisotropy must be present in order to
account for domains with protruding features. Both elastic anisotropy and anisotropic line tension can result in
domains with indentations. The numerical algorithm has been extended to investigate the problem of a bubble
in an extended region ordered phase.

PACS number~s!: 68.55.2a, 68.18.1p, 68.55.Ln, 68.60.2p
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I. INTRODUCTION

A Langmuir monolayer is a single molecular layer of i
soluble surfactant molecules spread on the air/water in
face. The surfactants are typically amphiphilic molecu
with a hydrophilic headgroup and a hydrophobic tail. Ea
of the individual molecules has internal degrees of freedo
namely, the tilt and the tilt azimuth. Such a system exhibit
complex phase diagram@1#. The ‘‘tilted’’ phases have uni-
form tilt and possess mesoscopic ordering in the tilt azimu
The structure of the tilt azimuth is typically observed as
variation in the light intensity under a Brewster angle mic
scope. The tilt azimuth organization is referred to as the t
ture. Various classes of the texture have been observed,
as stripes in the bulk@2#, star configurations@3,4#, and ‘‘boo-
jums’’ @5# in the domains of the tilted phase, when it coexi
with an isotropic phase. The term boojum refers to a clas
textures that has a tilt azimuth distribution which resemb
the structure of the orbital angular momentum in a superfl
3He droplet@6#. The boojum texture, in which the tilt azi
muth is distributed continuously without singularity, will b
the subject of this report. Domains observed to contai
boojum texture are not circular in shape@5,7#. In addition,
micrometer-sized bubbles, which are regions of isotro
phase surrounded by a tilted phase, have been found to
noncircular shapes@7#. The local tilt azimuth in the tilted
phase around the bubble exhibits a nontrivial structu
which has been termed an ‘‘inverse boojum.’’ The relatio
ship between experimentally observed textures and the
derlying structure of the ordered phase has attracted atten
in the literature recently. In particular, the boojum textu
was first discussed by Mermin in the context of orbital a
gular momentum distribution in a superfluid3He droplet@6#.
Similar textures have been found and discussed in liq
crystal films @8,9#. An extensive discussion of the variou
classes of textures in the Langmuir monolayers can be fo
in Ref. @4#.

The problem of the equilibrium shape of, and the textu
contained in, domains in a Langmuir monolayer has b
investigated by Rudnick and Bruinsma@10#, who varied both
the texture and the boundary analytically in a perturbat
PRE 621063-651X/2000/62~2!/2416~12!/$15.00
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manner. It was discovered that a noncircular boundary r
resents the equilibrium shape of a domain only when ther
bulk or higher-order line-tension anisotropy@5,10#. The equi-
librium domain boundary was derived as a function of lin
tension anisotropy. Galatola and Fournier@11# obtained nu-
merically, in a fixed background texture, the equilibriu
boundary when both elastic and line-tension anisotropies
present. Rivie`re and Meunier@5# have attempted to explain
the observed noncircular domains in terms of elastic ani
ropy. Evidence of bubbles with a noncircular boundary a
an inverse boojum has been reported, and a qualitative
oretical discussion of the equilibrium shape and texture
sociated with the bubbles can be found in Ref.@7#. In the
spirit of Ref.@10#, the authors have analyzed in Ref.@12# the
equilibrium texture and boundary shape combinations per
batively to first order in both the bulk elastic and line-tensi
anisotropies. The approach describes the infinitesimal
sponse of the texture and the boundary to anisotropic par
eters. However, when the correction is large enough to
observed, the validity of first-order perturbative calculatio
becomes questionable. The extension of the perturbative
proach to include higher-order corrections is algebraica
formidable. If one is to go beyond first-order effects, the u
of numerical techniques in this problem is inevitable.

The major challenges in this problem are, first, the eva
ation of a two-dimensional~2D! texture with a boundary
condition on the boundary, which is itself variable. Second
not only must the texture be evaluated with high accura
but a precise determination of the derivatives of the text
on the boundary is also crucial to the computation of
boundary shape. The authors have developed a nume
algorithm based on the finite element method~FEM! with
adaptive mesh refinement@13# for the evaluation of a 2D
texture and its derivatives. The boundary corrections
then be computed using the Runge-Kutta method@14#.
Implementation of the numerical method reveals vario
classes of domain shapes ranging from those with inde
tions to those with protruding features and, additiona
cigar-shaped domains. The effects of bulk elastic anisotr
have also been examined. These studies lead us to the
clusion that, at least for those domain shapes observe
2416 ©2000 The American Physical Society
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PRE 62 2417NUMERICAL STUDIES OF DOMAINS AND BUBBLES OF . . .
date, it is more likely that the line-tension anisotropy is
sponsible for noncircular domains. A brief account of t
study described above has appeared in an earlier publica
@15#. The numerical results reported there and in this pa
confirm that the qualitative conclusions to be drawn from
perturbative treatment are preserved up to large anisotr
parameter.

In this paper, we describe in detail the implementation
the numerical methods that led us to the results reporte
Ref. @15#. The extension of the algorithm to allow for com
putation in the case of a bubble has also been examined.
verified numerically that bubbles acquire a nontrivial boun
ary shape when only the first term in the Fourier expans
of the line tension is present. This result contrasts with w
is known to be true in the case of the domain, which rema
circular in the presence of this low-order line-tension anis
ropy @10#. With the use of our numerical algorithm, we a
able to examine the effects of the bulk elastic anisotropy
the shape of the bubble and on the texture that surround
We find that bulk elastic anisotropy significantly affects t
texture in the condensed phase around the bubble while l
ing the boundary nearly unmodified.

The organization of this paper is as follows. Section
contains the details of the computational scheme for
evaluation of the equilibrium textural and boundary config
ration for domains. The discussion covers the derivation
the simplest variational formulation of the finite eleme
method in our specific application, the Runge-Kutta meth
and the combined algorithm. In Sec. III, results for the d
main are examined. Section IV describes the extension o
numerical algorithm to the problem of bubbles. An examin
tion of the results of the perturbative treatment follows. R
sults on the effect of the bulk elastic anisotropy on the t
tures around the bubbles are discussed. Finally, Sec
contains concluding remarks and discusses possible fu
extensions of the numerical methods discussed in this rep

II. NUMERICAL ALGORITHM

The model that we adopt for the Langmuir monolayer i
simple elastic model of an ordered medium associated w
XY-like order parameter—a two-dimensional unit vec
ĉ(x,y), which can be parametrized asx̂cosQ(x,y)
1ŷsinQ(x,y) @12#. The quantitiesx̂ andŷ are unit vectors in
a Cartesian coordinate system, andQ(x,y) is the angle be-
tween ĉ and thex axis. The energy of the system contai
contributions from the boundaryG in addition to the bulkV.
The most general form of the elastic energy@4,8# for such a
system with in-plane reflection symmetry~an achiral system!
can be written as

H@Q#5E
V
HbdA1 R

G
s~q2Q!ds, ~2.1!

where

Hb5
Ks

2
u¹• ĉu21

Kb

2
u¹3 ĉu2, ~2.2!
-

on
er
e
ic

f
in

is
-
n
t
s

t-

n
it.

v-

I
e
-
f

t
,

-
he
-
-
-
V
re
rt.

a
th
r

s~f!5s01 (
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an cosnf, ~2.3!

Ks andKb are respectively the splay and bend elastic mod
andq is the angle between the outward normaln̂ of G and
thex axis. The setup of the computations is shown in Fig.
In terms of the average Frank modulusk and the coefficient
of elastic anisotropyb, where 2k[Kb1Ks and 2kb[Ks
2Kb , the extrema of the elastic energy Eq.~2.1! occur when
Q(x,y) and the bounding curveG satisfy their respective
equilibrium conditions. The extremum equations forQ(x,y)
are

2¹2Q1b@~Qxx2Qyy!cos 2Q12Qxy sin 2Q

1~2Qx
21Qy

2!sin 2Q12QxQy cos 2Q#50

~2.4!

in V and

kQn@12b cos 2~q2Q!#1kbQ t sin 2~q2Q!2s8~q2Q!

50 ~2.5!

alongG, whereQn5n̂•¹Q, Q t5 t̂•¹Q, t̂ being the tangen-
tial vector. The extremum equation for the bounding cur
G, in terms ofQn , Q t , anddq/ds, is

Hb2s8~q2Q!Qn2s9~q2Q!Q t

1@s~q2Q!1s9~q2Q!#
dq

ds
1l50, ~2.6!

FIG. 1. The geometry of the calculations for~a! domains and~b!
bubbles in plane-polar coordinates where the boundaryG is param-

etrized byr(w). The gray area is the bulk designated byV. n̂ and

t̂ are the outward normal and the tangent, respectively.Q is the

angle between theĉ director and thex axis andq is the angle
between the outward normal of the boundary and thex axis.
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2418 PRE 62KOK-KIONG LOH AND JOSEPH RUDNICK
whereds is the length element ofG traversing in the positive
direction ofV, andl is a Lagrange multiplier that enforce
the condition of constant enclosed area.

The equations for bothQ andG are complex and highly
nonlinear. Closed form analytic solution of the extremu
equations appears impossible. Attempts have been mad
solve the simultaneous equation perturbatively to first or
in the elastic and line-tension anistropies@12#. When the cor-
rections to the boundaries are large enough to be observ
it is not expected that the results will be accurate and hi
order corrections have to be taken into account. Howe
these perturbative calculations provide us with insight w
regard to the infinitesimal response of the boundary to
anisotropies under investigation. In the work to be descri
below, we analyze the equations numerically in order to f
ther explore the implications of the simple model Eq.~2.1!
for a larger range of the anisotropic parameters. We re
coefficients up toa2 in the expansion of the line tension i
our analysis, i.e.,s(f)5s01a1(cosf1g cos 2f), where
the quantityg[a2 /a1 is defined for convenience. We re
mark that the analysis will be based on the exact boo
texture with circular domain wheng5b50. The boundary
will be computed in terms of the corrections to the circu
boundary. The discussions will be restricted to those
mains with boundariesG for which the distance from eac
point on the curves to the originek(w) is a single-valued
function of the polar anglew.

The numerical algorithm consists of two parts: in the fi
part, one evaluates the textureQ using an assumed bounda
G, and, in the second part, one computesG using a fixedQ.
Simultaneous equilibrium conditions forG and Q are
achieved when a set of predefined self-consistent criteria
met. It is evident from the form of Eq.~2.6! that accurate
determinations ofQ and its derivatives are the key factors
the solution of the problem. There are a number of numer
techniques for solving the partial differential equation E
~2.4!, such as finite difference methods, spectral metho
finite element methods, etc. Both finite difference metho
and spectral methods are convenient when applied to
tems with boundaries of regular geometries, such as cir
or straight lines, while the finite element methods are form
lated for problems with highly irregular geometries. For t
case of our problem, the boundary condition Eq.~2.5! ap-
plies toG, which is an arbitrary curve. This militates in favo
of the FEM. A key feature of the FEM is flexibility in the
choice of the set of points at which the functional values
to be evaluated, including those on the boundary of the
gion of interest. This feature is exactly what is needed in
problem, because of the nontrivial geometry of the bound
One of the simplest constructions of the FEM in two dime
sions is described as follows@13#. We first approximateG by
a polygonal curve, then subdivideV into a set of nonover-
lapping triangles. No vertex of one triangle lies on the ed
of another in the set. The edges of the set of triangle for
mesh that coversV. The process of creating this set of tr
angles is called mesh generation. The resulting set of
angles is referred to as the triangulation ofV. Functions are
defined by their values on the vertices of the triangles in
triangulation. The value of a function within a triangle
obtained by interpolation using the values on the vertic
Integration overV is the sum of integrations over the tr
to
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angles, which can generally be trivially evaluated. We ha
now projected our problem, originally on an infinite dime
sional space, onto anN dimensional space, whereN is the
number of vertices in the triangulation ofV. We may write
Q[(Q i), i 51, . . . ,N and

Q~x,y!5(
i 51

N

Q iw i~x,y!, ~2.7!

where w i(x,y) is a set of basis functions of theN dimen-
sional space. Thesew i ’s should not be confused with th
polar angle, which is denoted by the symbolw without a
subscript. The discrete version of the elastic energy fu
tional Eq.~2.1! is a function ofN variablesQ i and it can be
rewritten in terms ofk andb as

H~Q!5
k

2EV
$u¹Qu21b@~2Qx

21Qy
2!cos 2Q

22QxQy sin 2Q#%dA1 R
G
s~q2Q!ds,

~2.8!

where Qx5(Q iw ix , Qy5(Q iw iy , w ix[]w i /]x, and w iy
[]w i /]y. The equilibrium condition becomes

]H~Q!

]Q i
50, i 51, . . . ,N, ~2.9!

which is a discretized version of Eqs.~2.4! and~2.5!. The set
of equations above is not linear. However, if we write the
in the form of A(Q)•Q5b(Q), whereA(Q) is an N3N
matrix, andb(Q) andQ are 13N column matrices as show
below:

Ai j ~Q!5kE
V

@w ixw jx~12b cos 2Q!1w iyw jy~11b cos 2Q!

1b~w ixw jy1w iyw jx!sin 2Q#dA, ~2.10!

bi~Q!5kbE
V

@~2Qx
21Qy

2!sin 2Q12QxQy cos 2Q#w idA

1 R
G
s8~q2Q!w ids, ~2.11!

we are able to solve forQ iteratively using a standard nu
merical algorithm for the solution of systems of linear equ
tions. We have adopted the method of LU decomposit
@14#, a numerical algorithm for inverting a matrix, to solv
for Q

The mesh generation algorithm plays an important role
the efficiency of the FEM. An adaptive mesh generation
gorithm is used in our program to determineQ. We start
with a mesh that is nearly regular throughoutV with a pre-
defined grid size. After obtaining a first estimate ofQ, a
refined mesh is generated. The refined mesh has variable
sizes overV depending on the variation ofQ. Figure 2 de-
picts the process of mesh generation with adaptive refi
ment. We are able to determine not onlyQ, but also the
derivativesQ t and Qn , which are necessary for evaluatin
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FIG. 2. The progressive steps toward mesh generation of the problem for the domain;~a! initial choice of grid points in a square lattice
~b! deforming to grid points into the region of interestV and the bounding curveG while keeping the square lattice topology an
connectivity,~c! triangulation using the square lattice connectivity, and~d! resulting mesh after adaptive mesh refinement.
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the bounding curve, accurately and efficiently with the ad
tive mesh generation algorithm.

The next part of the algorithm is the determination of t
bounding curveG. We assume the order parameter fieldQ is
fixed in Eq.~2.6! so as to simplify the problem. We then pic
an origin in V and parametrize the bounding curveG as
k(w), whereek(w)[ur u is the distance between the origin an
(x,y) on G, andw is the polar angle. In this parametrizatio
Eq. ~2.6! is a second-order nonlinear differential equation
k(w). If we rewrite Eq.~2.6! as

k91q~w;k,k8!k85r ~w;k,k8! ~2.12!

wherek8[dk/dw and

q~w;k,k8!52
s8Qw2s9Qk

s1s9
~11k82!, ~2.13!

r ~w;k,k8!5S 12
s8Qk1s9Qw

s1s9
D ~11k82!

1
ekHb1l

s1s9
~11k82!3/2. ~2.14!

Again, it is possible to integrate the equation fork(w) itera-
tively using a standard method for the solution of ordina
differential equation. The Runge-Kutta method@14# is cho-
sen for our application.

The problem of solving Eqs.~2.4!, ~2.5!, and ~2.6! for
Q(x,y) and G is reformulated in terms of the solution o
Eqs. ~2.9! and ~2.12! iteratively for Q and G. We begin by
assuming an initial boundaryG (0) and textureQ(0), from
which the textureQ8(1) can be computed using the FEM
Then the iterated textureQ(1)5Q(0)1(Q8(1)2Q(0))/nT

(0) is
-in turn used to evaluate a new accepted boundaryG (1)

5G (0)1(G8(1)2G (0))/nB
(0) , where G8(1) is obtained using

the Runge-Kutta ordinary differential equation integrator
Eq. ~2.6!. The process is repeated until bothDQ(n)[uQ(n)

2Q(n21)u and DG (n)[uG (n)2G (n21)u are less than a prese
tolerance of the orderO(1025). The factorsnT

(n) and nB
(n)

with initial magnitude on the order ofO(10) are introduced
to avoid numerical instability in these iterative process
These factors,nT

(n) and nB
(n) , are adjusted depending o

DQ(n) and DG (n), and at the final iterations take on value
close to unity. Using this set of self-consistent criteria, t
results can be shown, by explicit calculations, to be sensi
to change in the parameters, namely,g andb, at least of the
orderO(1022) in the regions of the parameter space we w
be investigating.

III. DOMAINS

It is well established that the boundary is strictly circul
for a domain with a boojum texture when elastic anisotro
and line-tension anisotropy are not present, org5b50 @10#.
This texture-boundary combination is indeed a local mi
mum of Eq.~2.1! @16#. Thus, in order for there to be noncir
cular domains, it is necessary to retain terms in the expan
Eq. ~2.3! up to at least terms varying asa2. Using the nu-
merical algorithm described above, we have performed s
tematic studies of the domain textures and shapes in term
the elastic anisotropy and the line-tension anisotropy as w
as the domain size. The quantityb defined earlier as (Ks
2Kb)/(Ks1Kb) parametrizes the elastic anisotropy. Wh
b.0, bend textures are preferred; splay is preferred w
b,0. The line-tension anisotropy is parametrized byg
[a2 /a1. The coefficienta1 will be positive for convenience
@12#. Then, the inequalityg.0 corresponds to the case
which theĉ directors on the boundary prefer to lie tangent
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it while g,0 applies when theĉ directors prefer to point
along the normal to the boundary,6n̂. The variations of
these anisotropic parameters are associated with the m
scopic details of the Langmuir monolayers, such as the ch
length of the surfactant molecules and the interactions
tween them. However, the correspondence between the
isotropic parameters and the microscopic details has no
been fully established. Before we describe our observat
we note that, wheng5b50, the exact result is given by
circular boundary of radiusR0 together with a boojum tex
ture with a 12 defect located a distanceRB[R0(1
1A11r0

2)/r0 from the center of the domain, wherer0

[R0a1 /k is the normalized domain radius@10#. An exact
equilibrium texture-boundary combination is shown in F
3. The simulated image obtained using Brewster angle
croscopy~BAM ! is also displayed in the background. Th
signature of a boojum in a BAM image is a set of straig
constant-intensity lines emerging from a virtual defe
slightly outside the domain. The light intensity in a BAM
image depends on the exact experimental setup and the p
erties of the monolayer@17#. In the case of all simulated
BAM images presented in Fig. 3 and elsewhere in this
port, the Brewster angle is taken to be that of waterQB
553.12°, the angle of the analyzera is equal to 90°, the
thickness of the monolayer is assumed to bed50.3 nm, the
tilt is 30°, the dielectric constants of the monolayer aree'

52.31, e i52.43, and it is assumed that the wavelength
the light l5514 nm.

We first concentrate on the effects ofb and keepg50.
When b,0, the texture is altered in such a way that t
virtual defect appears to move closer to the boundary. Th
observed as accelerated convergence of the cons
intensity lines to a point on the boundary. On the other ha
when b.0, the texture relaxes as if the virtual defect h
moved away from the boundary. The deviation of the text
from the boojum texture is as large as 20% whenubu'0.8.
The textural response is qualitatively in accord with that
ported in Ref.@11#. Although there are significant textura
corrections due to the presence of bulk elastic anisotropy

FIG. 3. Circular domain with a boojum texture,R055, s0

54, a151.6, a250, k51, andb50. Also shown in the back-
ground is the simulated image that would be obtained by Brew
angle microscopy.
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resultant textures very much resemble a boojum as see
the BAM image shown in Fig. 4. This means that it is dif
cult to identify elastic anisotropy based on observation of
textures in the domains. The response of the boundar
elastic anisotropy that we obtain contrasts with that repor
in Ref. @11#. The domain acquires an indentation whenb
,0. The indentation remains observable for a large rang
domain sizes. The boundary protrudes slightly forb.0, as
depicted in Fig. 4. The protrusion whenb510.8 is subtle
and does not resemble the sharp feature observed experi
tally. Thus, elastic anisotropy alone is not capable of
counting for the shapes of the domains observed experim
tally. Figure 5 shows domains of various sizes when~a! b
520.8 and~b! b510.8.

We now proceed to discuss the role of the line-tens
anisotropy, parametrized byg, in the textures and boundarie
of the domains. Elastic anisotropy will be eliminated (b
50) for simplicity. We first investigate situations whenugu
<1. For very small domains whereR0a1 /k!1, the texture
is almost constant and the dominant contribution to
boundary deformation is thea2 contribution. The domain is
elongated at both ends along the axis connecting its ce
and the virtual defect wheng.0, and is flattened at both
ends along the same axis wheng,0. Domain shapes exhibi
a twofold symmetry. WhenR0a1 /k>1, the texture closely
resembles the boojum texture and contributes significantl
the boundary distortion through the influence ofg on the line
tension. The domain no longer displays twofold symme
and acquires a protrusion wheng.0, or an indentation when
g,0. Figure 6 shows domains withg ranging from20.5 to
0.5. The numerical algorithm also allows us to examine
main shape and texture whena150 anda251. In this case,
the domain acquires a ‘‘cigar shape’’ and the texture is
sociated with two virtual11 defects@10,12#. The progres-
sive changes of the texture and the shape from a system

er

FIG. 4. The textures and shapes of domains withR055, s0

54, a151.6, anda250. Their stiffness coefficients are~a! b5
20.8, ~b! b50.8.

FIG. 5. The domain shapes computed fora054, a151.6, and
a250, andR050.5,1,2,4,8. Their stiffness coefficients are~a! b
520.8, ~b! b50.8. For ease of observation, domains are n
shown to scale.
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PRE 62 2421NUMERICAL STUDIES OF DOMAINS AND BUBBLES OF . . .
a151 and a250 to one for whicha150 and a251 are
shown in Fig. 7. When botha1 and a2 are nonzero, the
texture can be thought of as a superposition of purea1 and
purea2 textures. Typically, atR0a1 /k;1, the effect of the
set of two 11 defects becomes observable wheng51/4.
Domains with indentation and protrusions and the cig
shaped domains, have all been observed experimentally@18#.

We have already briefly discussed the issue of size de
dence in the previous paragraph. To look into this matte
detail, we will examine the particular set of data reported

FIG. 6. The textures and shapes of domains computed
20.5,a2,0.5, R055, s054, a151. ~a! a2520.5, ~b! a25
20.3, ~c! a2520.1, ~d! a250.1, ~e! a250.3, and~f! a250.5.

FIG. 7. The textures and shapes of domains withr51 anda0

54. Their coefficients of the anisotropy line tension are~a! a1

51, a250, ~b! a150.8, a250.2, ~c! a150.6, a250.4, ~d! a1

50.4, a250.6, ~e! a150.2, a250.8 and~f! a150, a251.
-

n-
n
n

Ref. @7#, in which the domains investigated possess protr
ing features sharp enough that ‘‘excluded angles’’C0 char-
acterizing the boundaries can be identified. The definition
C0 and the experimental data are depicted in Fig. 8. The
features of this set of experimental data are that~1! C0 goes
through a maximum asR0 varies;~2! there is an abrupt onse
of C0 in the smallR0 region; and~3! the intercept at theC0
axis when the curve is extrapolated implies limR0→` C0Þ0.

Before we make comparisons between theoretical res
and the experimental data, we comment on the extractio
C0 from computed domain boundaries. It has been sho
that, within the parameter regime of our discussions, the
main boundaries are smooth and continuous. There is
cusplike singularity on the boundary. This can be seen in
domains of various sizes shown in Fig. 9. Nevertheless,C0
can be unambiguously measured for some of these dom
The values of the parameters utilized here arek51, d
50.4, andg50.5. To determineC0 for these domains, we
adopt a systematic scheme~devised in Ref.@12#! that utilizes
the function I[I 0 exp@2(d2x/dy2)2# to capture the mos
likely C0 for a given domain bounding curve, wherex(y)
parametrizesG in a Cartesian coordinates system. Dens
plots of I as a function ofC[22 tan21 dx/dy and R0 for
numerical and the perturbative results are shown, resp
tively, in Figs. 10~a! and 10~c!, the darker regions represen
ing largerI, and highlighting the more likely values ofC0.
With the use of this method for the determination ofC0, we
have obtained reasonable agreement between the pert

r

FIG. 8. ~a! The definition of the excluded angleC0. ~b! Experi-
mental measurements of the domain-sizeR0 dependence ofC0

observed in the domains of theL2 phase~one of the tilted phases!
surrounded by theL1 phase~one of the isotropic phases! taken from
Ref. @7#.

FIG. 9. The shapes of domains of various sizes computed
s054, a151.6, anda250.8. ~a! Smaller domains withR050.2,
0.25, 0.33, 0.5, and 1, which exhibit two-fold symmetry.~b! Larger
domains withR052, 2.5, 3.3, 5, and 10, which have a protrusion
one end of the boundary. Each of the sets of domains is plotte
scale.
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tive analysis and the numerical computations in the largeR0
regime. We note here that the value at whichg is set, 0.5, is
too large for perturbative results to be dependable. Howe
the perturbative results resemble those obtained numeric
in the sense thatC0 increases asR0 decreases from̀ . The
abrupt onset ofC0 indicated in Figs. 10~c! and 10~d! is not
present in Figs. 10~a! and 10~b!. It is, however, evident in
Figs. 9 thatC0 can be unambiguously identified for domai
with R0>1. WhenR0,1, the domains become elliptical an
C050. Hence, there is an apparent jump inC0 near R0
51, beyond whichC0 becomes nonzero. The jump inC0
predicted in the perturbative analysis@12# is indeed con-
firmed by the more reliable numerical computations repor
here. For very small domains (R0,1), the shapes are pre
dicted to be elliptical by our numerical analysis, in contra
to the prediction of nearly circular domains that results fro
the perturbative analysis. The magnitude ofg that results in
breakdown of the first-order perturbative analysis is the
origin of the mismatch. In Figs. 10~b! and 10~d!, the maxi-
mum I max of I is shown as the dark line segments and
gray bands mark the regions in whichI .I max/2. They de-
pict, respectively, numerical and perturbative results. Sup
imposed are the experimental data, which provide a re
ence for the comparisons described above.

To compare the theoretical results to the experime
data, a length scale is required. The length scale is set by
assignmentk/a154 mm when the comparison is made b

FIG. 10. ~a! Density plot ofI as a function ofC andR0 of the
numerical results for the domains.~b! Plot of I max and the region in
which I .I max/2 as a function ofC andR0 of the numerical results
for the domains. Superimposed are the experimental data show
Fig. 8~b! with parametersk/a154 mm, d50.4, andg50.5. ~c!
and ~d! are corresponding plots for the perturbative results.
r,
lly

d

t

y

e

r-
r-

al
he

tween the perturbative results and the experimental data@12#.
Except for examining the results of more reliable compu
tions, there is no attempt to fit the experimental data in t
report for reasons to be discussed below. We first adopt
same set of parameters with which the perturbative anal
fits the data in the large-R0 regime, for the comparison. It is
obvious from Fig. 10~b! that even atg50.5, the theoretical
prediction for the maximum ofC0 is much smaller than tha
observed experimentally. This superficial comparison
tween the maxima ofC0 implies thatg is very much larger
in the system investigated. Detailed comparisons do sh
excellent agreement for domains larger than 10mm. Experi-
mentally observed domains with maximumC0 and small
circular domains are not reproduced numerically. Attem
have been made to investigate the combined effect of
elastic anisotropyb andg. However, forg of such a magni-
tude, contributions fromb do not affect the qualitative be
haviors discussed in this context. It is thus concluded th
although the simple elastic model is not capable of fu
addressing the issue of the domain size dependence o
shapes, it has successfully produced the qualitative feat
in theC0 versusR0 plot and many nontrivial domain shape
observed in various experiments@18#.

In the large-R0 regime (R0@1), the boundary correction
are confined in a small portion of the boundary and the
mains become nearly circular. Because of the rapid tex
variations in the immediate vicinity of the boundary, asso
ated with the approach to the boundary of the virtual defe
we are unable to perform dependable numerical invest
tions of extremely large domains. This leaves open the qu
tion of the asymptotic behavior ofC0 in the R0→` limit.

With the numerical scheme for evaluatingQ andG simul-
taneously, we are able to explore the simple model Eq.~2.1!
in a much wider range of the parameter space with co
dence. Not only does the model account for domains w
various features observed in experiments, it also yields
appropriate domain size dependence of the boundary sha
However, we are unable to perform reliable numerical inv
tigations on extremely large domains. Despite the fact t
there is an upper bound to the domain size that we are ab
compute, we believe, on the basis of measurements of
defect positions@5#, that the largest domains we are able
compute are not smaller than those that have been obse
experimentally. The numerical algorithm appears to be
pable of evaluating domain shapes for arbitrary anisotro
line tension, with one caveat. A closer look at Eqs.~2.13!
and ~2.14! immediately indicates that this approach is n
appropriate for situations in whichs1s950 at some points
on the boundary. An approach that is appropriate to this s
ation is the Wulff construction@10#.

IV. BUBBLES

We now turn to the investigation of bubbles. The first ta
is to numerically evaluate the texture in a regionV that does
not have an external boundary. It is possible to implemen
straightforward extension of the problem of the domain
introducing an artificial external boundary far away from t
inner bounding curveG. One must introduce a boundar
condition on this added external boundary by hand. Fig
11 displays the triangulations associated with such an im

in
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mentation of the approach to the calculation of the prope
of a bubble. The method, though inefficient, produces res
that are consistent with those obtained perturbatively@12#.

The problem that involves aninfinite V with internal
boundaryG is referred to as the exterior problem. If one do
not introduce an artificial external boundary, it is necess
to have at hand a complete set of exterior solutions to c
struct the boundary condition atG. For our particular case
this is possible whenb50, in which case the bulk extremum
equation reduces to Laplace’s equation. The examinatio
the problem with nonzerob is a major goal of this investi-
gation, and we are not aware of the existence of an ap
priate set of external solutions in this case. Noting that
order parameter tends to a fixed value (Q50 for our case
here! as r→`, it is possible to approach the problem of th
bubble using a different set of polar coordinates, i
(r 8,w)[(1/r ,w), that transform the bubble into a domain
areaV8 and bounding curveG8, shown in Fig. 12, with the
‘‘elastic energy’’

H5
k

2EV8
$Qx

21Qy
21b@~2Qx

21Qy
2!cos 2~Q22w!

12QxQy sin 2~Q22w!#%dA1 R
G8

s~q2Q!

R22
ds.

FIG. 11. Mesh with additional external boundary used in
direct extension of the FEM algorithm for bubbles.

FIG. 12. Solving the problem of the bubble by transforming
into an inverse domain problem.~a! shows the regionV of ordered
phase and the boundaryG for the bubble.~b! shows the transformed
regionV8 and boundaryG8. ~c! shows the mesh that coversV8.
y
ts

s
y
n-

of

o-
e

.,

With the problem transformed, the meshing algorithm us
for the domain can be applied immediately. We are then a
to proceed with the investigation of the bubbles with t
same efficiency and accuracy as in the studies of the
mains.

In the numerical studies that we have performed with
use of the transformation above, the results for the bubb
reported in the perturbative analysis@12,7#, that the bound-
aries are not circular even whenb50 anda250, have been
confirmed. Figure 13 shows the texture and the boundar
a typical bubble. In the background simulated BAM imag
one notes the circular constant-intensity lines that iden
the ‘‘inverse boojum.’’ The numerical algorithm further en
ables us to obtained equilibrium bubble boundaries and
tures around them when elastic anisotropies are presen
can be seen in Fig. 14, the elastic anisotropy leaves
boundaries substantially unaffected while significan
changing the appearance of the textures around the bub
The BAM images are also shown in the same figures.
contrast to the case in whichb50, the constant-intensity
lines become elongated perpendicular to the axis connec
the center of the bubble and the position of the virtual def
whenb,0. These lines are elongated in the direction of t
axis whenb.0, as shown. This allows for the determinatio
of the sign ofb in the Langmuir monolayer by examining th
BAM images of the bubbles.

In Figs. 15, we display the size dependence of the bub
boundaries. Bubbles appear to be circular when they
small (R0,1). For large enough bubbles (R0>1), an ‘‘ex-
cluded angle’’C0 defined in Fig. 8~a! can be identified. An
approach similar to the analysis of the size dependence o

FIG. 13. Boundaries and textures around the bubbles forR0

55, a151, k51, andb50.

FIG. 14. Boundaries and textures around the bubbles forR0

55, a151, k51, ~a! with b520.8 and~b! with b50.8.
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2424 PRE 62KOK-KIONG LOH AND JOSEPH RUDNICK
boundary in the case of domains can be applied. Figu
16~a! and 16~c! compare the density plots ofI as a function
of C versusR0 for the numerical and the perturbative r
sults. The two plots are in excellent agreement. Wheng
50, the texture does not differ significantly from that of th
inverse boojum even though the bubble is not exactly cir
lar. This contrasts with what is seen in domains whengÞ0,
in which case the textures can deviate significantly from
boojum texture. TheR0 dependence ofC0 has features tha
are qualitatively similar to those seen in the case of doma
i.e., a maximum and an onset. These features have also
observed experimentally@7#. Experimental data are show
together with the numerical and perturbative results in F
16~b! and 16~d!, respectively, and all the results match re

FIG. 15. Boundaries of bubbles computed fork50.16, s0

51, a150.16 and~a! R051,2,3,4,5,6, and~b! R058,20,40.

FIG. 16. ~a! Plot of I as a function ofC andR0 of the numerical
results for the bubbles.~b! Plot of I max and the region in whichI
.I max/2 as a function ofC andR0 of the numerical results for the
bubbles. Superimposed are the experimental observations of
eous bubbles in theL2 phase. The experimental data have appea
in Ref. @7#. The parameters for the by-eye fit arek/a150.4 mm
andd50.16.~c! and~d! are the corresponding plots for the pertu
bative results.
es

-

e

s,
en

s.
-

sonably well. The by-eye fit was obtained in Ref.@7# and no
further adjustment of the parameters is made in this inve
gation.

We have thus devised a numerical method to approach
problem of the bubble that can be implemented with
same efficiency as in the problem of the domain. There
good agreement between perturbative and numerical res
We are able to investigate the effect of the elastic anisotro
and our results point to a possible means for the determ
tion of the relative strength ofKs andKb .

V. CONCLUSIONS

We have discussed in this report the implementation o
numerical method that leads us to the solution of simu
neous equilibrium conditions for the textures and the bou
ing curve of the domains. Using this numerical algorithm,
have investigated the influences on the textures and dom
shapes of the line-tension and elastic anisotropies. Our an
sis of this simple model reveals that elastic anisotropy do
indeed, result in interesting domain boundaries with prot
sions and indentations. The domains with indentations
semble those observed experimentally. However, the
mains that we generate with protrusions are very differ
from those in observed in BAM images@18#. Hence, elastic
anisotropy cannot qualitatively account for all experimen
observations. Furthermore, our numerical results are in c
trast to the claims in Ref.@11#. Dents in boundaries are du
to a bend modulus that exceeds the splay modulus, i.eb
[(Ks2Kb)/(Ks1Kb),0, while protrusions are presen
whenb.0. On the other hand, the second harmonic con
bution to the line tension, parametrized byg[a2 /a1, is ca-
pable of producing nontrivial domain shapes that resem
the shapes observed experimentally. For the influence og
on the boundary, our results are in qualitative agreem
with those presented in Ref.@11#. Comparison has also bee
made between perturbative results@12#, the numerical com-
putations described here, and the experimental data@7#. The
magnitude ofg used in the perturbative analysis is the prim
factor causing the mismatch between the perturbative
numerical results. Wheng is large~50.5 for our case!, the
first-order perturbative approach is not expected to be ac
rate.

While the results of the perturbative analysis and the
merical study are different quantitatively, they possess si
lar qualitative features, namely, the onset of the exclud
angleC0 as the domain sizeR0 increases, followed byC0
reaching a maximum and then decreasing asR0 continues to
increase. These match the qualitative features that are pre
in the experimental data@7# shown in Fig. 8~b!. Experimental
results are not reproduced in the numerical calculations w
R0 is small. The discrepancies between the experimental
and the numerical result imply that other interactions, n
glected in the model, may be significant.

We have also extended the numerical algorithm to
problem of bubbles. It is found that the transformationr
→r 8[1/r results in a new domain problem which allows
to solve the equilibrium conditions for the bubbles at t
same level of efficiency and accuracy as those for the
mains. Not only have we obtained results that are consis
with those in the perturbative analysis@7,12#, we have also

as-
d
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analyzed the effect of elastic anisotropy on the textures
the boundary of the bubbles, a task that is algebraically
midable in a perturbative analysis. The influence of ela
anisotropy on the boundary is small while it significan
modifies the textures. This provides a means for the qua
tive determination of the elastic anisotropy by observing
texture around the bubbles. The agreement between the
turbative results and the numerical computation is excell
This is not surprising asa2 is not involved. TheR0 depen-
dence ofC0 is similar to that in the case of the domai
except that the maximum ofC0 is much smaller. The per
turbative result agrees reasonably well with the experime
data as reported in Ref.@7#. The numerical results match a
well.

In conclusion, we have successfully implemented a
merical algorithm that enables us to analyze unambiguo
a simple model, Eq.~2.1!, of tilted ordered media in a non
trivial geometry imposed by experimental observations. U
ing this numerical algorithm and its extensions, we are a
to address the long-standing debate with regard to the or
of the cusplike features observed in domains of Langm
monolayers using an elastic model. Within the context of t
simple model, which addresses only the competition betw
the bulk elastic energy and the boundary energy, many qu
tative features of the experimental observations have b
captured. Discrepancies cannot be avoided, as the real
tem is much more complex. The model we adopted has
glected other effects and interactions that are present in
real system, such as dipolar interactions and adjustmen
the tilt degree of freedom. A combination of these effe
may account for the discrepancies between the experime
data and the theoretical results. The apparently general
merical algorithm is, however, not capable of handling si
ations in whichs1s950 at some points on the boundary.
different approach, such as the Wulff construction@10#, is
required. Nevertheless, our numerical algorithm is versa
and can be extended to systems containing topological
fects, or with the ordered phase filled in a non-simp
connected space.
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APPENDIX A: VARIATIONAL FORMULATION
OF THE FEM

In finite element analysis, we approximateQ(x,y) by Eq.
~2.7!. The energy functionalH@Q# given in Eq.~2.1! now
becomes

H~Q!5
k

2EV
$u¹Qu21b@~2Qx

21Qy
2!cos 2Q

22QxQy sin 2Q#%dA1 R
G
s~q2Q!ds,

~A1!
d
r-
ic
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-
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where we putQ[(Q1 ,Q2 , . . . ,QN)T, andQ5(w iQ i . We
differentiate Eq.~A1! with respect toQ i yielding

]H~Q!

]Q i
5kE

V
@w ixw jx~12b cos 2Q!

1w iyw jy~11b cos 2Q!

1b~w ixw jy1w iyw jx!sin 2Q#dAQ j

2kbE
V

@~2Qx
21Qy

2!sin 2Q

12QxQy cos 2Q#w idA

2 R
G
s8~q2Q!w ids. ~A2!

The equilibrium condition givesAQ5b with A and b pro-
vided in Eqs.~2.10! and ~2.11!.

APPENDIX B: INTEGRATION OVER A TRIANGULATION

The integrals in Eqs.~2.10! and~2.11! overV are broken
up into sums of integration over the triangles in the triang
lation of V. Integration over the interior individual triangle
can usually be carried out analytically, depending on the s
cific forms of the basis functionsw i(x,y) and the matrix
elementsAi j andbi . We have chosenw i(x,y) to be a con-
tinuous, piecewise linear function inx and y within a tri-
angle. The line integralrGds in bi must be evaluated nu
merically, because the integrand depends on the polar a
w, which is not linear inx or y. This does not degrade th
efficiency of the computation because, first of all, only t
angles whose perimeters coincide withG contribute to the
line integral, and secondly it is a line integral over a sh
distance.

In Eq. ~2.7!, we express the functionf (x,y) for (x,y)
PV in terms of its values at the nodes of the triangulati
and the corresponding basis functionsw i(x,y). Within an
individual triangleK, we can write

f ~x,y!5(
i 51

3

f Ki
wKi

(K)~x,y!, ~B1!

whereKi is the index of thei th vertex of the triangleK, and
f Ki

5 f (xKi
,yKi

) and (xKi
,yKi

) are, respectively, the func

tional value off (x,y) and the coordinates of thei th vertex.
wKi

(K)(x,y) is the restriction ofwKi
(x,y) in K. The actual in-

dex of thei th vertex isKi . It is, however, awkward to carry
the K in the symbolKi throughout the discussion. We wi
use i to identity the vertex for simplicity from now on, i.e.
f Ki

is simplified asf i . We introduce a set of natural coord

natesu andv such that

f ~u,v !5 f 11~ f 22 f 1!u1~ f 32 f 1!v, ~B2!

whereuP@0,1#, vP@0,1#, andu1v<1. Transformation be-
tween variable setsx2y andu2v can be obtained from Eq
~B2! by substitutingf with x andy. We then have the follow-
ing relations:
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u5
1

D
@~y32y1!x2~x32x1!y1x3y12x1y3#, ~B3!

v5
1

D
@~y12y2!x2~x12x2!y1x1y22x2y1#, ~B4!

whereD is the Jacobian determinant given by

D5
]~x,y!

]~u,v !
5x1y22y1x21x2y32x3y21x3y12x1y3 .

~B5!

Identifying Eqs. ~B1! and ~B2!, we find w1(u,v)512u
2v, w2(u,v)5u and w3(u,v)5v. In terms of x2y, we
have

w1~x,y!5
1

D
@~y22y3!x2~x22x3!y1x2y32x3y2#,

~B6!

w2~x,y!5
1

D
@~y32y1!x2~x32x1!y1x3y12x1y3#,

~B7!

w3~x,y!5
1

D
@~y12y2!x2~x12x2!y1x1y22x2y1#.

~B8!

Evaluation of the matrix elementAi j involves the follow-
ing area integrals, which can be computed analytically. T
trivial one is the area ofK, which is *KdA5uDu/2, and

E
K
cos 2Q dA5

uDu
4 S cos 2Q1

~Q12Q2!~Q22Q3!

1
cos 2Q2

~Q22Q3!~Q32Q1!

1
cos 2Q3

~Q32Q1!~Q12Q2! D , ~B9!

E
K
sin 2Q dA5

uDu
4 S sin 2Q1

~Q12Q2!~Q22Q3!

1
sin 2Q2

~Q22Q3!~Q32Q1!

1
sin 2Q3

~Q32Q1!~Q12Q2! D , ~B10!

asw ix andw iy are constants. Evaluation ofbi involves
e

E
K
w1 cos 2Q dA5

uDu
4 S cos 2Q1

~Q32Q1!~Q12Q2!

1
sin 2Q12sin 2Q3

2~Q12Q3!2~Q32Q2!

2
sin 2Q12sin 2Q2

2~Q12Q2!2~Q32Q2!
D ,

~B11!

E
K
w2 cos 2Q dA5

uDu
4 S cos 2Q2

~Q12Q2!~Q22Q3!

1
sin 2Q22sin 2Q3

2~Q22Q3!2~Q32Q1!

2
sin 2Q22sin 2Q1

2~Q12Q2!2~Q32Q1!
D ,

~B12!

E
K
w3 cos 2Q dA5

uDu
4 S cos 2Q3

~Q22Q3!~Q32Q1!

1
sin 2Q32sin 2Q2

2~Q22Q3!2~Q22Q1!

2
sin 2Q32sin 2Q1

2~Q12Q3!2~Q32Q1!
D ,

~B13!

E
K
w1 sin 2Q dA5

uDu
4 S sin 2Q1

~Q32Q1!~Q12Q2!

2
cos 2Q12cos 2Q3

2~Q12Q3!2~Q32Q2!

1
cos 2Q12cos 2Q2

2~Q12Q2!2~Q32Q2!
D ,

~B14!

E
K
w2 sin 2Q dA5

uDu
4 S sin 2Q2

~Q12Q2!~Q22Q3!

2
cos 2Q22cos 2Q3

2~Q22Q3!2~Q32Q1!

1
cos 2Q22cos 2Q1

2~Q12Q2!2~Q32Q1!
D ,

~B15!
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E
K
w3 sin 2Q dA5

uDu
4 S sin 2Q3

~Q22Q3!~Q32Q1!

2
cos 2Q32cos 2Q2

2~Q22Q3!2~Q22Q1!

1
cos 2Q32cos 2Q1

2~Q12Q3!2~Q32Q1!
D . ~B16!

The above formulas will work only ifQ1ÞQ2ÞQ3. Let us
consider cases where the values ofQ5QE at two vertices of
triangle K and Q5QO at the other vertex. We obtain th
following for the integrals inAi j :

E
K
cos 2Q dA5

uDu
4 S cos 2QE2cos 2QO

~QE2QO!2
1

2sin 2QE

QE2QO
D ,

~B17!

E
K
sin 2Q dA5

uDu
4 S sin 2QE2sin 2QO

~QE2QO!2
2

2 cos 2QE

QE2QO
D .

~B18!

We denote aswE the restrictions of the basis functions at t
nodes that haveQ5QE , and aswO the restriction of the
basis function at the node that hasQ5QO . We arrive at

E
K
wE cos 2Q dA5

uDu
4 S sin 2QE

QE2QO
1

cos 2QE

~QE2QO!2

2
sin 2QE2sin 2QO

2~QE2QO!3 D , ~B19!

E
K
wO cos 2Q dA5

uDu
4 S 2

cos 2QE1cos 2QO

~QE2QO!2

1
sin 2QE2sin 2QO

~QE2QO!3 D , ~B20!
-

r,

v

.

E

k,
E
K
wE sin 2Q dA5

uDu
4 S 2

cos 2QE

QE2QO
1

sin 2QE

~QE2QO!2

1
cos 2QE2cos 2QO

2~QE2QO!3 D , ~B21!

E
K
wO sin 2Q dA5

uDu
4 S 2

sin 2QE1sin 2QO

~QE2QO!2

2
cos 2QE2cos 2QO

~QE2QO!3 D ~B22!

for the integrals required to evaluatebi . Finally, whenQ i
5QE for all i ’s, one will need*KwE dA5uDu/6.

APPENDIX C: DERIVATIVES ON THE BOUNDARY

One of the biggest benefits of the FEM is that it enab
straightforward determination of the derivatives ofQ on the
boundary. The tangential derivative at nodei is

]Q

]t U
i

5
1

2ekA11k82 S Q i 112Q i

w i 112w i
1

Q i2Q i 21

w i2w i 21
D . ~C1!

The normal derivative ofQ is given by Eq.~2.5!, which
reads

]Q

]n
5

eks8~q2Q!1kbQ t sin 2~Q2q!

k@12b cos 2~Q2q!#
. ~C2!
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